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a b s t r a c t 

First-principles Markov Chain Monte Carlo sampling is used to investigate uncertainty quantification and 

uncertainty propagation in parameters describing hydrogen kinetics. Specifically, we sample the posterior 

distribution for thirty-one parameters focusing on the H 2 O 2 and HO 2 reactions resulting from condition- 

ing on ninety-one experiments. Established literature values are used for the remaining parameters in 

the mechanism as well as other thermodynamic and transport data needed to specify fluid properties. 

The samples are computed using an affine invariant sampler starting with broad, noninformative priors. 

Autocorrelation analysis shows that O(1M) samples are sufficient to obtain a reasonable sampling of the 

posterior. The resulting distribution identifies strong positive and negative correlations and several non- 

Gaussian characteristics. Using samples drawn from the posterior, we investigate the impact of parameter 

uncertainty on the prediction of two more complex flames: a 2D premixed flame kernel and the ignition 

of a hydrogen jet issuing into a heated chamber. The former represents a combustion regime similar to 

the target experiments used to calibrate the mechanism and the latter represents a different combustion 

regime. For the premixed flame, the net amount of product after a given time interval has a standard de- 

viation of less than 2% whereas the standard deviation of the ignition time for the jet is more than 10%. 

The samples used for these studies are posted online. These results indicate the degree to which parame- 

ters consistent with the target experiments constrain predicted behavior in different combustion regimes. 

This process provides a framework for both identifying reactions for further study from candidate mech- 

anisms as well as combining uncertainty quantification and propagation to, ultimately, tie uncertainty 

in laboratory flame experiments to uncertainty in end-use numerical predictions of more complicated 

scenarios. 

© 2019 Published by Elsevier Inc. on behalf of The Combustion Institute. 
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. Introduction 

Assembling combustion kinetic mechanisms is an arduous task,

n which computation and simulation have increasing importance.

 mechanism is specified by giving the functional form of the rate

quations and a “calibration” that determines numerical values for

he unknown parameters. Traditionally, parameters in the rate ex-

ressions (the “calibration” in our terminology) are determined

rom direct measurements designed to isolate specific reactions,

nd from theory. These experiments are typically difficult to de-

ign since most observable quantities are the result of many reac-

ion steps and first-principles calculation of elementary rates from
∗ Corresponding author. 

E-mail address: ray.grout@nrel.gov (R. Grout). 

fl  

r  

T  

u  

ttps://doi.org/10.1016/j.combustflame.2019.04.023 

010-2180/© 2019 Published by Elsevier Inc. on behalf of The Combustion Institute. 
uantum mechanics principles is still an active research area, e.g.

1] . The resulting mechanism is then tested against simplified lab-

ratory flame experiments, with sensitivity analysis used to iden-

ify how predictions depend on specific parameters. The sensitivity

nalysis, combined with estimated error bars on parameters, can

e used to identify reactions that require further study. 

A complementary approach is to augment direct experiments

nd theory with 0D (homogeneous ignition) and 1D (steady flame)

xperiments and integrate that data into the mechanism design

nd calibration process. In these experiments, the highly nonlin-

ar parameter dependence can be determined only through simu-

ation. The calibration is optimized to find the best fit to a set of

ame experiments. Prior knowledge about the reactions is incorpo-

ated into the operation as inequality bounds on the parameters.

his approach was used to develop GRIMech [2] and is currently

sed by a number of groups in the chemical kinetics community

https://doi.org/10.1016/j.combustflame.2019.04.023
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[3–5] . To reduce the computational effort required for the opti-

mization, most groups have adopted a response surface approach.

In this approach, sensitivity analysis is used to determine what

parameters are most important for a given experiment and a re-

sponse surface model for that experiment is constructed based on

that reduced set of parameters. 

Here, we adopt the philosophical approach of Bayesian uncer-

tainty quantification, see e.g., [6] and many references there. The

use of Bayesian inference for combustion chemistry is reviewed

at length by Wang and Sheen [7] . Wang and Sheen note that al-

though the problem is often ill-posed because the available data

either does not constrain the parameters as much as might be de-

sired or is inconsistent with established models, progress is likely

to be made by attacking the problem of individual rate coefficients

in tandem with an inverse approach to constrain the distribution

of uncertain rate parameters through combustion experiments. The

effort presented here concerns the latter part of this two-faceted

approach, and incorporates the former by excluding parameters in-

volved in rates representative of well understood reactions from

the active parameter set. 

Rather than finding the best fit to kinetic parameters, the goal

in a Bayesian approach is to characterize the distribution of pa-

rameters that are consistent with a given set of experimental data.

This addresses the specific question of how much a particular

dataset constrains a parameter set associated with a model that,

combined with prior distributions of the parameters, encapsulates

prior knowledge. Wang and Sheen [7] also observe that uncertainty

quantification is useful to measure progress: in that sense, the ap-

proach presented here provides a basis to assess the impact of a

given set of experiments on reducing the uncertainty in selected

parameters. It also allows us to assess, not only which parameters

are important for a given set of experiments but also which pa-

rameters are not. Parameters that are not important are indicated

by uniform posteriors and present potential candidates for removal

from the active set to improve the efficacy of the sampling strat-

egy; however, it is also possible that with additional data these pa-

rameters could become important. Another potential result is high

posterior density near lower bounds that would ‘turn off’ the effect

of various reactions, suggesting that those reactions are candidates

for removal from the mechanism for the conditions studied. In all,

capturing the broader distribution of parameters consistent with

the data provides a natural framework for assessing the predictive

capabilities of the resulting model. 

A related philosophical issue is the value of the distribution of

the maximum likelihood estimators or the posterior distribution.

For example, Khalil et al. [8] use a parametric bootstrap approach

based on the methodology described in Berry et al. [9] ; such an

approach allows one to estimate posterior correlations in best fit

parameters, i.e., what is the uncertainty in the best fit parameters.

While conceptually related to the posterior distribution, there are

numerous circumstances (specifically when the model is ill condi-

tioned in the sense that large changes in the parameters lead to

small changes in the measurements) where the uncertainty in the

MLE is less than the uncertainty in the parameters. Because our

interest is in uncertainty propagation for potentially ill conditioned

systems, we prefer the latter and focus on the posterior distribu-

tion. An incidental advantage of the bootstrap approach used by

Khalil et al. [8] is that it facilitates a 2-step approach to generate

a modeled distribution of the underlying measurements when de-

rived quantities are used as inputs, convenient when only derived

quantities are available for a given dataset. However, interestingly,

Kim et al. [10] used very similar direct measurements as inputs

and found that a 2-step approach whereby the derived measure-

ments ruled out by Khalil et al. were actually preferable. In either

case, only very small parameters sets were considered and it is not

clear how extensible the approaches are to larger parameter sets. 
In general, there is a balance between mathematical and phys-

cal rigor [7] . Sampling approaches treat the full complexity of the

hysical process with high fidelity, while long correlation times

nd associated high computational cost tend to limit their appli-

ability to large parameter sets. On the other hand, response sur-

aces, linear models, and polynomial chaos expansions tend to be

ble to treat dozens of parameters (e.g., [11] ) but they introduce

ssumptions about the system that may lack the physical richness

f the underlying combustion process. 

Our methodology uses first principles Bayesian uncertainty

uantification followed by uncertainty propagation. The uncer-

ainty quantification step provides a joint probability distribution

f the active parameters conditioned on the experimental data. In

his step, it is necessary to evaluate the likelihood of observables

orresponding to experimental measurements. Our approach fol-

ows the basic approach used by Braman et al. [12] to quantify

he distribution of parameters in several syngas mechanisms con-

istent with a database of premixed laminar flames assuming that

he experimental error is Gaussian with a fixed mean and variance.

n alternative approach, used for example by by Kim et al. and

halil et al. [8,10] is to treat the experimental measurements with

 model where noise parameters are also part of the inference. Un-

ike Braman et al., we adopt the philosophical preference for broad,

ninformative priors used by Kim et al. [10] , who adopted a uni-

orm distribution for the logarithm of pre-exponential factors. As

hown in Braman et al., an informative prior can leave a significant

mprint on the posterior, resulting in a posterior distirbution that

epends strongly on subjective judgments based on presupposed

nowledge of the parameters. For that reason we have elected to

se broad prior distributions for the parameters. 

When narrow uniform distributions are used, experience from

he literature (Miller and Frenklach [13] and Wang and Sheen

7] ) suggests that bounds imposed on parameters individually may

rovide insufficient support for the posterior distribution. When

he posterior depends strongly on prior bounds, we believe this

ay indicate that the new experiments partly contradict previ-

us understanding. This issue of inconsistency between datasets

s problematic and has been addressed from many philosophical

iews [7] . One approach is to view new data as highly informa-

ive that results in tightly specified parameters. An alternative view

s that the new data is likely erroneous. Various attempts to ad-

ress this are found in the literature, for example the uncertainty

n the model should be increased to accommodate the new data.

e treat this pragmatically by increasing the prior bounds suffi-

iently to permit a posterior distribution that is largely indepen-

ent of the prior bounds. Unfortunately, broad priors lead to much

arger regions of parameter space to explore, which puts stringent

emands on the sampling methodology. We have used an affine

nvariant ensemble sampler [14] that can handle wide ranges in

cales, strong correlations between parameters and non-Gaussian

ehavior. As a pragmatic approach, we also incrementally broad-

ned the prior within physically meaningful limits until sensitivity

f the results to the prior was eliminated from the posterior. 

Here we will focus on hydrogen kinetics. Although hydrogen

inetics have been studied extensively, some aspects of the hy-

rogen oxygen mechanism are still uncertain. The present study

ocuses on 31 calibration parameters related to pre-exponential

actors and third body coefficients in the HO 2 and H 2 O 2 pathways

hat are thought to be significant at high pressure. Given the com-

lex interactions between reactions and parameters, we believe it

s more informative to study the simultaneous impact of many pa-

ameters than to isolate them into smaller subgroups. We note that

ur decision to use broad priors for this study disregards current

nowledge of these parameters. Here our goal was to eliminate

trong dependence of the posterior distribution on the prior for

he selected parameters and assess what can be learned about the
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arameters solely from the given target experiments. For all of the

ther parameters describing the mechanism, we used the accepted

alues in the literature and exclude them from the sampling, ef-

ectively adopting a zero-variance prior for these parameters. As

ell as shedding light on a particularly thorny set of reactions,

his is an exemplar for how to treat a plausible situation in mech-

nism development. Often a number of reactions are well under-

tood (e.g., through elementary rate experiments or quantum cal-

ulations) while others are less well characterized. For those that

re less well characterized it is useful to have a rigorous procedure

o guide further study. The procedure adopted here can be used

o identify parameters that the experiments are insensitive to as

ell as to design new experiments. Equipped with this knowledge,

he unimportant parameters can be left with very approximate

alues and new experiments can be designed that can discrimi-

ate between the pathways that are indistinguishable with existing

ata. 

The present study uses published data from 91 experiments,

rimarily laminar flame speed measurements augmented with a

mall number of flow reactor and ignition delay experiments. The

ayesian posterior is defined in terms of the mismatch between

omputational predictions and measured experimental data nor-

alized by experimental error bars. Each likelihood requires com-

utation of steady flames and time-dependent 0D flow reactor and

gnition delay experiments. We do not use any type of surrogate

odel for these systems. Instead we rely on direct simulation each

xperiment. Specifically, we use the PREMIX code [15] for steady

ames, and VODE [16] for the 0D and ignition delay simulations.

fter a long MCMC run and an auto-correlation analysis of the out-

ut, we used the samples to represent the posterior distribution as

 set of points. Each sample represents a collection of 31 param-

ters that is consistent with the 91 experiments. This represen-

ation of the posterior makes it easy to examine projections into

ower dimensions to facilitate visualization and also draw samples

rom the posterior by selecting points at random while avoiding

ny constraints on the form of the distribution. 

Our strategy represents a relatively brute-force approach to the

roblem. The sampling is based on a sophisticated MCMC sam-

ling strategy that imposes minimal assumptions on the posterior

istribution. We have specified broad uninformative priors (except

or physical constraints) and used direct simulation of the exper-

ments to avoid an implicit bias in the sampling process. These

actors combine to makes the sample process considerably more

xpensive; however, the results provide a detailed characterization

f the information about the mechanism that is contained within

he data. 

We also explored the potential impact of posterior parame-

er uncertainty using computational uncertainty propagation. We

hose two numerical experiments whose results would be sensitive

o kinetics effects and ran them for several hundred parameter sets

hat characterize the posterior. We emphasize that the parameter

ets for the different runs are different, but all of them are con-

istent with the experiments. The first experiment is propagation

f a flame in a premixed medium from a small crenelated kernel.

he resulting flame is thermo-diffusively unstable, making it sen-

itive to kinetics; however, it is in a similar combustion regime

o many of the target experiments used for calibration. For this

ase, although the flames show some differences in structure, the

et fuel consumption is fairly insensitive to the different choices

f parameters. The other experiments is the ignition of a jet of

old H 2 fuel into a bath of a hot mixture of O 2 and N 2 . This non-

remixed ignition experiment represents a combustion regime that

s not well represented by the calibration experiments. Not surpris-

ngly, in this case the predicted ignition time of the jet shows a

trong dependence on the parameters, indicating that for this type

f problem there is still significant uncertainty in the predictions. 
The results of our Bayesian calibration are posted online in

he form of 576 sample calibrations. These are the samples used

or the uncertainty propagation experiments just described. In the

ayesian philosophy, the posterior distribution is the calibration.

his set of samples seems to be the best representation of the

osterior that we can offer. We forego the traditional practice of

ublishing the best fit calibration and error bars because we do

ot feel that this is an accurate representation of the posterior.

he posterior means and covariances are readily estimated from

he samples. (This information can provide some rough idea about

ensitivity; however, the posterior is sufficiently far from Gaussian

hat they do not provide a good characterization of the posterior.) 

The organization of the rest of the paper is as follows.

ection 2 contains a detailed description of the problem setup. This

ncludes a discussion of the kinetic mechanism and a discussion

f our choice of parameters. We also discuss the experiments that

ere selected for the study along with the associated experimental

rror distributions. Finally we give a precise definition of the prior

istributions. In Section 3 , the affine invariant MCMC sampler that

e selected is motivated and described. Section 4 presents an anal-

sis of the MCMC output. This includes an auto-correlation analysis

hat studies the quality of the resulting chain. It also includes some

tatistical analysis of the samples to explore the posterior distribu-

ion. Finally, in Section 5 , we describe the two uncertainty propa-

ation experiments and present the results. 

. Problem setup 

.1. Hydrogen kinetics 

Hydrogen–oxygen kinetics have been the subject of extensive

tudy, both because of interest in hydrogen and hydrogen-enriched

uels and because the H 2 /O 2 mechanism forms an important sub-

echanism in hydrocarbon kinetic mechanisms. 

Two primary datasources have led to the current state-of-the-

rt hydrogen oxidation mechanisms. First, elementary rate mea-

urements, taken from carefully constructed experiments sensitive

o one or a small number of individual reaction rates are used to

nfer individual rate parameters such as done by authors in [17,18] .

econdly, macro experiments where the observable depends on the

ntire reaction mechanism have been used to validate and under-

tand reaction pathways through mechanisms created by assem-

ling the elementary reactions. Such mechanisms have been de-

eloped and updated as individual rates have been refined, e.g. the

equence of work by Yetter et al. [19] , Mueller et al. [20] . 

In addition to exploring how the various elementary reactions

nteract, comparison of macro observables to experimental mea-

urements has been used for refinement of the mechanism in a

comprehensive’ sense, such as undertaken by by Li et al. [21] and

’Conaire et al. [22] . The Li et al. mechanism has been updated by

urke et al. [23,24] while the O’Conaire et al. mechanism has been

pdated by Keromnes et al. [25] . A similar kinetic mechanism has

een developed by Konnov [26] , also by assembling elementary re-

ctions from the literature. 

Closely related developments have been made for kinetic mod-

ls involving hydrogen and carbon monoxide (syngas). Li et al.

27] augmented their earlier H 2 /O 2 mechanisms with C 1 /O 2 kinet-

cs and then adjusted key rate constants identified by sensitivity

nalysis to improve predictions of the macro experiments. Davis

t al. [4] placed somewhat heavier emphasis on macro optimiza-

ion and developed a H 2 /CO mechanism based on assembling a

rial mechanism drawing significantly the H 2 /C 1 /O 2 chemistry from

RI-Mech [2] and then optimizing a significant number of kinet-

cs parameters against a library of laminar flame, flow reactor and

hock-tube experiments. You et al. [28] produced a viable hydrogen

echanism as a byproduct of establishing the ‘data collaboration’
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Table 1 

Arrhenius rate parameters for syngas combustion model (kinetics, and accompanying thermodynamics and transport –

in [29] format). Parameter database taken from [24] ), except for the final two, which were taken from [28] . Parameters 

in bold and italic are active for the present study; the green parameters are varied synchronously. The forward rate 

constant, K f = AT β exp (−E a /RT ) . ∗The number in parentheses is the exponent of 10, i.e., 2.65(16) = 2.65 × 10 16 . For 

the active parameters lower and upper bounds (hidden constraints) are provided in the last column. 

RID Reaction A ∗ β E a Bounds L:U 

R1 H + O 2 = O + OH 1.04(14) 0 15,286 

R2 O + H 2 = H + OH 3.818(12) 0 7948 

O + H 2 = H + OH 8.792(14) 0 19,170 

R3 OH + H 2 = H + H 2 O 2.16(8) 1.51 3430 

R4 2 OH = O + H 2 O 3.34(4) 2.42 −1930 

R5 H 2 + M = 2 H + M 4.577(19) −1.40 104,380 

Third-body: H 2 (2.5), H 2 O(12), Ar(0), He(0) 

H 2 + Ar = 2 H + Ar 5.84(18) −1.10 104,380 

H 2 + He = 2 H + He 5.84(18) −1.10 104,380 

R6 2 O + M = O 2 + M 6.165(15) −0.5 0 

Third-body: H 2 (2.5), H 2 O(12), Ar(0), He(0) 

2 O + Ar = O 2 + Ar 1.886(13) 0 −1788 

2 O + He = O 2 + He 1.886(13) 0 −1788 

R7 O + H + M = OH + M 4.714(18) −1 0 

Third-body: H 2 (2.5), H 2 O(12), Ar(0.75), He(0.75) 

R8 H 2 O + M = H + OH + M 6.064(27) −3.322 120,790 

Third-body: H 2 (3), H 2 O(0), He(1.1), N 2 (2), O 2 (1.5) 

H 2 O + H 2 O = H + OH + H 2 O 1.006(26) −2.44 120,180 

R9 H + O 2 (+M) = HO 2 (+M) 

high pressure, K f ∞ 4.65084(12) 0.44 0 2(12):1(13) 

low pressure, K f 0 6.366(20) −1.72 524.8 0:8(20) 

TROE: F c = 0 . 5 

Third-body: H 2 ( 2.0 ) 0:6 

H 2 O( 14 ) 0:28 

O 2 ( 0.78 ) 0:3 

Ar( 0.67 ) 0:3 

He( 0.8 ) 0:3 

R10 HO 2 + H = H 2 + O 2 2.750(6) 2.09 −1451 1(6):5(16) 

R11 HO 2 + H = 2 OH 7.079(13) 0 295 2(13):1(14) 

R12 HO 2 + O = OH + O 2 2.850(10) 1 −723.93 1(9):1(11) 

R13 HO 2 + OH = O 2 + H 2 O 2.890(13) 0 −497 1(13):6(13) 

R14 2 HO 2 = O 2 + H 2 O 2 4.200(14) 0 11982 1(14):2(15) 

2 HO 2 = O 2 + H 2 O 2 1.300(11) 0 -1630 5(10):4(11) 

R15 H 2 O 2 (+M) = 2 OH ( + M) 

high pressure, K f ∞ 2.00(12) 0.9 4 8,74 9 5(11):1(12) 

low pressure, K f 0 2.49(24) −2.3 4 8,74 9 1(23):1(25) 

TROE: F c = 0 . 43 

Third-body: H 2 ( 3.7 ) 0:15 

H 2 O( 7.5 ) 0:20 

H 2 O 2 ( 7.7 ) 0:20 

O 2 ( 1.2 ) 0:5 

N 2 ( 1.5 ) 0:5 

He( 0.65 ) 0:4 

R16 H 2 O 2 + H = OH + H 2 O 2.410(13) 0 3970 5(11):1(14) 

R17 H 2 O 2 + H = HO 2 + H 2 4.820(13) 0 7950 1(12):9(13) 

R18 H 2 O 2 + O = OH + HO 2 9.550(6) 2 3970 1(5):3(7) 

R18 H 2 O 2 + OH = HO 2 + H 2 O 1.740(12) 0 318 5(10:5(12) 

H 2 O 2 + OH = HO 2 + H 2 O 7.590(13) 0 7270 4(12):4(14) 

X1 HO 2 + H = H 2 O + O 3.97(12) 0 671 1(12):9(12) 

X6 O + OH + M = HO 2 + M 8.0 0 0(15) 0 0 2(15):2(16) 

Third-body: H 2 ( 2 ) 0:6 

H 2 O( 12 ) 0:35 

Ar( 0.7 ) 0:3 

He( 0.7 ) 0:3 
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method as part of a workflow to automate mechanism generation.

The mechanism was subsequently the focus of an uncertainty anal-

ysis study performed by Li et al. [5] . 

We note that the literature cited above represents two signif-

icantly different approaches to mechanism development. One ap-

proach relies on adjustment of individual reactions done in the

context of insight and analysis of reaction pathway fluxes whereas

the other places greater reliance on sensitivity studies and global

optimization to provide a mechanism that targets a specific set

of macro experiments. The Bayesian approach used here repre-

sents, in some sense, an intermediate approach that attempts to

develop a more general purpose mechanism and uses macro ex-

periments to constrain parameters rather than fit parameters. Al-
hough not pursued here, detailed reaction path analysis can be

ncorporated into the Bayesian framework, which would represent

 more blended approach. 

.2. Choice of parameters 

For the analysis here, we have started with the basic reac-

ion model developed by Burke et al. [23,24] . We have augmented

hat basic reaction set by incorporating two additional reactions

dentified by Burke et al. as X1 and X6. The baseline mechanism

s summarized in Table 1 . For this baseline mechanism, we have

hosen to vary the pre-exponential factors and third-body coeffi-

ients for reactions involving HO and H O . (One could vary other
2 2 2 
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arameters in the reactions as well but we do not have a sufficient

mount of data to handle more parameters effecitvely.) These ac-

ive parameters are indicated in red and green in Table 1 . (The two

reen coefficients, the Ar and He third body coefficients, were set

qual to each other and represent a single parameter.) These pa-

ameters play an important role in high-pressure lean flames and

re not as well understood as the reactions involving H, O and OH

adicals. 

As noted above, for the present study we will select broad pri-

rs so that the prior does little to constrain the portion of parame-

er space that is explored. (We again acknowledge that this choice

gnores much of the prior art.) The prior is a product of one vari-

ble priors for each parameter. This makes the parameters inde-

endent in the prior. Figure 2 shows strong dependences between

ariables in the posterior. We first select a Gaussian for each pa-

ameter with a mean given by the value of the parameter as spec-

fied by Burke et al. and a standard deviation equal to the mean.

or reactions X1 and X6, we use the characterization of the reac-

ions in You et al. [28] to set the mean values. There values are

ummarized in Table 1 . We then restrict these priors with upper

nd lower bounds to prohibit nonphysical parameter choices, such

s negative pre-exponential factors or extremely large values that

ead to excessive failures of the software used to evaluate the dif-

erent experiments. These upper and lower bounds are also sum-

arized in the table. Thus, the prior for each parameter is a “trun-

ated” Gaussian. 

.3. Choice of experiments 

We have selected 91 experiments to provide data for the cali-

ration. Of these experiments, 77 are laminar premixed flame ex-

eriments across a broad range of stoichiometries and pressure. Of

hese 77 premixed flames, 71 were taken from Burke et al. [24] .

he remaining 6 premixed flames were taken from (Refs. 27–31

n [4] ). Data from the 77 premixed flames were augmented with

easurements from 14 experiments used by Davis et al. for opti-

ization of a syngas mechanism, including 6 flow reactors (Ref. 13

n [4] ) and 8 ignition experiments (Refs. 36–39 in [4] ). The pre-

ixed flame cases were simulated using PREMIX [15] ; for each

ase we extracted the propagation speed of the steady, unstrained

ame. The flow reactor and ignition delay experiments were simu-

ated as point (0D) reactors at constant pressure or volume, respec-

ively, using the backward-difference integration method in VODE

16] ; the data extracted from each of these simulations is detailed

n the relevant references, as are the measured values and exper-

mental errors bars. For each experiment, we have assumed that

easurement errors can be characterized by a Gaussian distribu-

ion with mean given by the experimental measurement and vari-

nce set by experimental error bars reported in the experiment. 

. Sampling methodology 

Our goal is to characterize the distribution of reaction param-

ters that is consistent with the available data. We will adopt a

ayesian sampling approach that allows us to sample this distribu-

ion. To make this precise, we define a combustion model M ( θ)

hat computes a predicted model vector z θ given a vector θ of

ctive parameters. Here the number of active parameters n θ = 31

nd the output vector is of size n z = 91 . We assume that we are

iven measurements d k for the suite of experiments and denote

he standard deviation of the measurement error by σ k . Given a

rior distribution, p ( θ) of θ, we can estimate the likelihood that z θ
ill match experimentally measured data. Using Bayes’ rule (see

.g. [6] ) 

p( θ| d ) = 

1 

Z f 
p θ( θ) p(d | θ) 
here p ( d | θ) is the distribution of predicted data given θ and Z f 
s normalization factor. Here we assume that measurement uncer-

ainty for experiment k is a Gaussian with mean d k and variance
2 
k 

so that 

p(d| θ) = 

1 

Z L 
exp 

( 

−
n z ∑ 

k =1 

(
z θ,k − d k 

)2 

2 σ 2 
k 

) 

. (1) 

If one assumes p θ( θ) is Gaussian and M is linear, then p ( θ| d )

ould also be Gaussian, and so its posterior would be completely

etermined by its mean and variance. The mean can be found by

inimizing the quantity 

 ( θ) = − log p( θ| d ) = − log p θ( θ) − log p(d | θ) − log (Z f ) . 

efine the minimizer, μ = arg min θ F ( θ) . When the model is non-

inear, this posterior mode (also called MAP point, for maximum a-

osterior point) need not be the posterior mean. There is no guar-

ntee that there is only a single global posterior mode. We note

hat ehe optimization package MINPACK was unable to reliably

dentify the posterior mode, which suggests the posterior is not

nearly” Gaussian. 

We have used Markov Chain Monte Carlo (MCMC) to produce

amples of the posterior distribution (1) . MCMC is a robust sam-

ling approach that does not necessitate restrictive assumptions

bout the structure of the posterior. Specifically, we use the em-

ee hammer software package of Foreman-Mackey [14] , which is

ased on the stretch-move ensemble sampler of Goodman and

eare [30] . The stretch move ensemble sampler addresses several

hallenges in MCMC sampling. First, the sampler is affine invari-

nt, which makes the sampler good at long narrow valleys and

voids the need to precondition the problem by a change of sam-

ling variables; such optimizations typically require hand-tuning.

econd, the sampler uses multiple walkers that can be divided into

wo groups each of which can be evaluated in parallel. 

. Sampling study 

This section has two parts. First we describe the results of the

CMC process. Auto-correlation studies show that many MCMC

teps are needed for good sampling. We explore possible reasons

or this. Next we visualize the posterior sample. 

We ran the emcee hammer code with an ensemble size L =
4 for approximately T = 1 . 5 × 10 4 steps. This produced 9.6 × 10 5 

amples, many of which are highly correlated. The initial ensem-

le is constructed by sampling each parameter from a Gaussian

istribution with the same mean as the prior but with the vari-

nce reduced by a factor of 100. The rationale here is that because

e are using broad priors, random samples from the prior have a

igh probability of failure which can cause the sampler to stall. The

ampler has a single dimensionless tuning parameter, a > 1, that

ets the length scale of proposed moves as a multiple of distance

etween samples. We took a = 1 . 3 throughout. We used the red-

lack parallel version of the sampler, which allows for 32 = 64 / 2

ndependent likelihood evaluations per re-sampling sweep. 

.1. Autocorelation 

We assess the quality of the samples by studying the auto-

orrelation functions of the individual variables in the calibration.

e refer the reader to [31] for background on the role of auto-

orrelation studies in analysis of MCMC output. We write θi,k,t 

or the value of parameter i in walker k after t sampler sweeps

hrough the ensemble. Then θk,t = ( θ1 ,k,t , . . . , θd,k,t ) is the sample

alibration corresponding to walker k at sweep t . For each i and
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Fig. 1. Average autocorrelation of 64 walkers for each parameter. 
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Table 2 

Subset of active parameters appearing in triangle plot in Fig. 2 . 

ID Role 

2 Pre-exponential factor in low pressure part of R9 

4 Third body efficiency of H 2 O in R9 

7 Third body efficiency of He in R9 

8 Pre-exponential factor in R10 

9 Pre-exponential factor in R11 

10 Pre-exponential factor in R12 

19 Third body efficiency of N 2 in R15 

22 Pre-exponential factor in R16 
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k , the numbers θi,k,t form a time series with a theoretical auto-

covariance function 

 i,s = cov ( θi,k,t , θi,k,t+ s ) . (2)

The theoretical lag s auto-covariance is the same for each walker,

k . We estimate (2) as follows. We omit the first T b = T / 2 samples,

T b being a burn-in time. This unusually large burn-in time reflects

the impact of using a tight cluster of initial sample points to ini-

tialize the sample and the long decay times of the auto-covariance

function we observed. For each walker and parameter, we estimate

the empirical auto-covariance as 

̂ 

 i,k,s = 

1 

T − T b − s 

T −s ∑ 

t= T b 

(
θi,k,t − θi,k 

)(
θi,k,t+ s − θi,k 

)
, 

with θi,k being the sample mean. Our overall estimate of C i,s is

found from these by averaging over walkers in the ensemble 

̂ 

 i,s = 

1 

L 

L ∑ 

k =1 ̂

 C i,k,s . 

The auto-correlations are the auto-covariances normalized by the

lag zero covariance: 

̂ ρi,s = 

̂ C i,s ̂ C i, 0 
. (3)

It is a peculiar feature of the emcee hammer algorithm, which is

not shared by other samplers, that the auto-correlation functions

of different parameters are similar. 

This is evident in Fig. 1 , which plots ̂ ρi,s for all d = 31 param-

eters. It shows that the auto-correlations decay on a time scale

of a thousand sweeps. This suggests that our run of T = 15(10 3 )

sweeps produces a modest number of effectively independent en-

sembles. In principle, we should give a quantitative estimate of the

auto-correlation time. But we judged that our run was too short

(measured in auto-correlation times) to make such an estimate re-

liable. The samples that we used for uncertainty propagation were

extracted from the second half of the run. 

The long auto-correlation times indicate that this posterior dis-

tribution is particularly hard to sample. This makes a striking con-

trast with other experience with the sampler, which is extensive.

See [14] for references to applications. The triangle plots below do

not indicate that the distribution is strongly multi-modal, but such

effects may only be visible in higher dimensions. 
.2. Posterior 

As we already stated, we represent the posterior as a point

loud consisting of a number of sample calibrations. It is a chal-

enging research area to visualize the properties of a point cloud

n 31 dimensions. The triangle plot (described below) may be used

o explore single parameter distributions and pairwise correlations.

e emphasize that many more subtle correlations and relation-

hips between parameters are possible. Uncertainty propagation is

ikely to be the only reliable way to determine how parameter un-

ertainties and correlations effect a target experiment. 

A triangle plot is a collection of histograms and scatterplots. It

s organized as a 2D array, with the plots indexed by parameter

airs, ( i, j ), with i on the horizontal axis and j on the vertical. For

ach j < i we show the histogram of pairs ( X i,k,t , X j,k,t ) over all k and

 . On the diagonal positions, ( i, i ), we show a histogram of the pa-

ameter X i,k,t . For 31 parameters, the individual plots in the triangle

lot shown on a printed page in this format would be too small to

e very useful. Figure 2 is a sparse triangle plot, drawn using eight

f the variables chosen to be representative of the qualitative fea-

ures of the full triangle plot. The parameters chosen are shown in

able 2 . 

The last two parameters have highly skewed distributions and

he bottom two rows of Fig. 2 in particular display strongly non-

aussian behavior. The bottom row is indicative of a parameter

here the posterior apparently has non-negligible likelihood right

p to a parameter bound. The second row from the bottom on

he other hand displays a non-Gaussian character that drops to

ero before encountering the parameter bound. With the excep-

ion of several parameters discussed below, the posterior is con-

ained within the parameter bounds. That is, the entire posterior

s captured within the bounds of the priors, indicating that the

riors is sufficiently broad that they do not effect overall results.

ther interesting qualitative behavior includes shapes that indi-

ate positively correlated (9,8); negatively correlated (7,4); inverse

10,2), (22,2), (22,8); Gaussian (10,9), (10,9); and complex relation-

hips (19,10), (22,10). Many of the pairs do not seem to have strong

orrelations. Not included in Fig. 2 but of interest because of lack

f dependence is the high pressure pre-exponential factor in R9

nd, to a lesser degree, the pre-exponential factor in reaction X1.

n both cases the posterior is broad and tends towards uniformity.

his is interesting as it suggests these parameters are not con-

trained by the data: the experiments chosen are simply not sen-

itive to these parameters. 

Some of observed behavior can be traced back to physically

eaningful relationships. For example, the positive correlation in

9,8) is between the pre-exponential factors in competing reactions

10 and R11: 

R10 HO 2 + H ⇔ H 2 + O 2 

R11 HO 2 + H ⇔ 2 OH 

Previous work [32] noted that the competition between these

wo reactions contributes substantially to the pressure dependent

ehavior of the mechanism. The positive correlation in the distri-
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Fig. 2. Triangle plot for subset of the parameters sampled ( i, j ∈ (2, 4, 7, 8, 9, 10, 19, 22)). Axis are normalized by prior means. 

Fig. 3. Sample temperature fields in premixed flame kernels at 30ms for three different 5 atm cases. 
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ution of the posterior reflects a constraint on the relative flux

hrough these competing pathways. 

The negative correlation between parameters (7,4) involves the

hird body efficiency of He and H 2 O in reaction R9: 

R9 H + O 2 (+M) ⇔ HO 2 (+M); 

where the net rate of this reaction can be maintained equiva-

ently by either third body. A further observation is that for several

f the parameters (e.g., ID 4, 10, 19, 22) the mode of the posterior

as shifted substantially from the prior mean. The behavior in the

ottom row, where the mode is at the lower bound (recall from

able 1 that the lower bound is two orders of magnitude less than

he prior mean), suggests that the mechanism might be more con-

istent with the data if this reaction was removed. 

. Uncertainty propagation results 

In the previous section, we showed that there is a wide range of

echanism parameters that are consistent with our target experi-
ents. An important question to ask is how much do the resulting

ncertainties in the mechanism influence predictions for other ex-

eriments. To quantify the resulting uncertainty, we select samples

rom the posterior distribution and use those samples to perform

imulations of additonal experiments. Direct use of samples from

he posterior avoids making any assumptions about the structure

f the distribution. Statistical analysis of the resulting simulations

rovides an assessment of the uncertainty that does not rely on

ny assumptions about the distribution of the uncertainty. 

Here we select 576 samples from the posterior, at uniform in-

ervals from the second half of the Markov chain – i.e., the val-

es of the 64 walkers at step numbers 7500 + 7500 · n, for n ∈ (0:

). We then considered two additional computational experiments:

ne designed to be similar to the experiments used to calibrate

he mechanism and the second designed to explore a different

ombustion regime. For the first case, we consider the propaga-

ion of a perturbed premixed hydrogen flame kernel at lean con-

itions. Specifically, we consider an open domain filled with pre-

ixed air at approximately 400 K and stoichiometry φ = 0 . 4 in a
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Fig. 4. Histogram of products at final time for premixed flame kernel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Histogram of products at final time for premixed flame kernel. 

Fig. 7. History of ignition delay for hydrogen jet injected into heated chamber. 
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4 cm × 4 cm domain. A perturbed flame kernel is initialized at

the center of the domain and allowed to propagate. We will con-

sider two different pressures: 5 atm, corresponding to conditions

within the overall range of conditions within the calibration data,

and 20 atm corresponding to conditions outside that range. Be-

cause this flame is thermodiffusively unstable, the detailed mor-

phology of any finite-time realization of the flame is expected

to be strongly dependent on the initial data. However, the mean

propagation of the integrated flame surface is less sensitive. 

For the lower pressure case, we integrate to 30 ms and gather

statistics on final product mass. In Fig. 3 we show the final con-

figuration for a set of three such flames, indicating the typical

range of variability observed over the 576 samples of the posterior.

Figure 4 shows a histogram of the integrated mass of H 2 O at the

final time (this is a surrogate measure of the mean flame propaga-

tion throughout the domain). The results indicate a fairly narrow

overall distribution and, given the inherent instability of this con-

figuration, suggests that the mechanism has been reasonably well

characterized for problems in this regime. To place the variability

with respect to different mechansisms in context, we performed

an additional study aimed at assessing the overall sensitivity of the

configuration. We selected two of the candidate mechanisms, cor-

responding to “fast” and “slow” flame propagation and ran 20 sim-

ulations with each using random perturbations to the initial ker-

nel. Using the metric discussed above, the results for the fast and

slow case were mean 37.6 with standard deviation 1.5 and mean

49.8 with standard deviation 3 . 1 , respectively. The standard devia-

tions correspond to factors of 0.25 and 0.5, respectively, compared

the standard deviation of the samples obtained by varying the

mechanism. 
Fig. 5. Sample temperature fields in premixed flame ke
Similar cases were computed at 20 atm to time 130 ms. The fi-

al configuration for three of those case is shown in Fig. 5 . Figure 6

hows a histogram of the integrated mass of H 2 O at the final time.

he results indicate a somwhat broader overall distribution than

as obtain in the 5 atm case. We again selected mechanisms cor-

esponding “fast” and “slow” flame propagation and ran 20 sim-

lations with each using random perturbations to the initial ker-

el. Using the metric discussed above, the results for the fast and

low case were mean 143.86 with standard deviation 0.57 and
rnels at 130 ms for three different 20 atm cases. 
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Fig. 8. Samples of H 2 jet at ignition. These correspond temperature and H 2 O 2 mole fraction for representative cases with long (78.8 ms), medium (60.1 ms), and short 

(42.9 ms) ignition times, relative to the variation observed over the sample set. 

Fig. 9. Temperature and H 2 O 2 mole fraction of the H 2 jets shown in Fig. 8 , shown here 4 ms after ignition. 
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ean 118.49 with standard deviation 0 . 27 , respectively. Thus, for

he metric considered, the standard deviation of the distribution

ith respect to mechanisms is more than a factor of 20 greater

han for the distribution with respect to initial perturbation, indi-

ating that as we extend outside the range of the calibration set,

he variability of the mechanisms compared to the inherent sys-

ems variability has increased. 

For the second example, we inject a cold H 2 jet ( T = 400 K)

nto a 1 atm heated chamber filled with quiescent air at T =
0 0 0 K in two dimensions. For these simulations we are inter-

sted in the time it takes for the jet to ignite, which we define

o be the time at which the maximum temperature in the domain

rst exceeds T = 1850 K. Figure 7 presents a histogram of the ig-

ition time for the 576 posterior samples discussed above. In Fig. 8

e show T and the mole fraction of H 2 O 2 for a slow, an interme-

iate and and a fast ignition case from the simulated ensemble.

igure 9 shows the same quantities four milliseconds later as the

ames continue to ignite. In this case, we see substantial variabil-

ty with a standard deviation of more than 10% of the mean. This

ariability reflects the sensitivity of the ignition process. To assess

he sensitivity of this configuration, we varied the initial chamber

emperature by ± 10. These simulations show changes in igition

elay of more than 0.08 s in each direction. Given that the mech-

nisms were calibrated primarily on premixed flames, the mecha-

isms produced similar results, relative to the inherent sensitivity

f the problem. 

Taken together, these three test cases (premixed flame kernels

t two pressures and the non-premixed jet ignition) provide

xamples where the experiments constrain the mechanism so

hat the uncertainty in behavior due to the mechanism ranges

rom negligible compared to the inherent sensitivity to nominal

arameters to being a significant source of uncertainty. While it

s intuitive that the data constrains the mechanism sufficiently

or experiments that lie within some radius of the conditions
sed for calibration, this demonstrates how the procedure used

rovides a systematic way to address the question of how well the

echanism has been constrained and if it is suitable for a given

pplication. We also observe that, for both of these problems,

ampling only two mechanisms drawn from the posterior (i.e., a

slow’ and ‘fast’ mechanism, both consistent with the data), gives

 qualitative sense of the sensitivity to the mechanism, viz, if the

echanism is reasonably well constrained for the problem at hand

efore one proceeds to expensive detailed uncertainty propagation.

. Conclusion 

We have performed a first principles Bayesian analysis of a

hemical kinetic mechanism for hydrogen. We have calibrated si-

ultaneously 31 parameters effecting third body interactions and

he H 2 O 2 an HO 2 pathways that are thought to be important at

igh pressure. We used data from 91 relevant experiments, 77 of

hich involve steady premixed flames. For this study we assumed

road priors to isolate impact of the data on the parameter distri-

ution. The posterior distribution of the 31 parameters was con-

tructed. We generated samples from the posterior using an ad-

anced Markov chain Monte Carlo (MCMC) algorithm. Each evalua-

ion of the posterior in the MCMC involved accurate simulation of

ll 91 experiments. 

Posterior sampling is significantly harder when using broad

on-informative priors. We felt it was important to use broad pri-

rs in order for the results to not be determined by details of

he prior, such as prior bounds on specific parameters. Sampling

s also harder in higher dimensions. It is much harder to sample

he present 31 dimensional posterior distribution than a posterior

istribution involving significanly fewer unknown fitting parame-

ers. Nevertheless, we felt it was important to vary as many of the

arameters in the H O and HO submechanism as was feasible.
2 2 2 



314 J. Bell, M. Day and J. Goodman et al. / Combustion and Flame 205 (2019) 305–315 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

 

 

 

 

 

 

 

 

 

R  

D  

i  

C  

t  

t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

 

 

[  

 

 

[  

 

 

Letting parameters vary simultaneously gives a more accurate view

of posterior parameter uncertainties. 

The posterior samples allowed us to do first principles Bayesian

uncertainty propagation to two distinct complex unsteady flames:

(1) an expanding lean premixed flame at high pressure, and (2) ig-

nition of a cold jet of fuel entering a bath of oxidizer. For the first

case, the predictions of the posterior samples were similar, as ex-

pected given that premixed flames were well-represented amongst

the calibration experiments. In the second case, the results show

considerable variability. Distinct parameter sets consistent with all

available calibration data lead to dramatically different predictions

of ignition time. This type of uncertainty propagation gives more

useful information about the uncertainty in parameter estimation

than individual error bars, confidence intervals, or even a poste-

rior covariance matrix. The posterior distribution is not well ap-

proximated by a multivariate normal. At present we are unaware

of shortcuts (response surface modeling, polynomial chaos expan-

sions, etc.) that would allow us to learn posterior uncertainties

with this level of fidelity. That said, it is possible that reduced or-

der modeling of the experiments or the log likelihood function,

together with multi-fidelity Monte Carlo techniques, could speed

the sampling process. It is worth noting that although we have not

done so here, using direct simulation of the experiment allows us

to incorporate additional data about a given experiment into the

sampling process with little additional effort. 

An important area for further research is understanding why

simultaneous fitting of many parameters is so difficult. The MCMC

sampler we are using has proven able to sample distributions in

much higher dimensions. But the present mechanism calibration

problem seems significantly harder. Flame physics and chemistry

are highly non-linear and the log-likelihood surface is non-convex.

We were unable to identify simple structures such as multiple

local probability peaks corresponding to locally optimal fits. It

seems possible to us that the log-likelihood surface has a complex

landscape. We believe that a better understanding of complex

log-likelihood surfaces would allow faster samplers. Slow sampling

was the primary bottleneck in the present work. 

Another useful extension of the present work would be in first

principles experimental design, also based on Bayesian uncertainty

propagation. One may be able to determine what new experiments

would most reduce the uncertainty in a specific target application

or a target parameter. 

It may be inappropriate to model experimental measurement

errors as Gaussian. The Gaussian distribution makes large errors

less likely than they may be in practical experiments. This may dis-

tort the results by making the calibrations too sensitive to outlier

experiments. It is not clear whether a fatter tailed distribution such

as a multivariate Student’s t rather than the Gaussian in (1) would

lead to significantly different results. 
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